Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EMBO Mol Med ; 14(11): e16109, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2025767

ABSTRACT

Monoclonal antibodies targeting the SARS-CoV-2 spike (S) neutralize infection and are efficacious for the treatment of COVID-19. However, SARS-CoV-2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE22 .v2.4-IgG1 was previously shown to be effective against SARS-CoV-2 variants when administered intravenously. Here, inhalation of aerosolized sACE22 .v2.4-IgG1 increased survival and ameliorated lung injury in K18-hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE22 .v2.4-IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18-hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE22 .v2.4-IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS-CoV-2 variants.


Subject(s)
COVID-19 , Lung Injury , Mice , Animals , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/genetics , Peptidyl-Dipeptidase A/metabolism , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing/therapeutic use
2.
Cell Rep ; 39(11): 110954, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1866958

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to shutoff of protein synthesis, and nsp1, a central shutoff factor in coronaviruses, inhibits cellular mRNA translation. However, the diverse molecular mechanisms employed by nsp1 as well as its functional importance are unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant, we show that nsp1, through inhibition of translation and induction of mRNA degradation, targets translated cellular mRNA and is the main driver of host shutoff during infection. The propagation of nsp1 mutant virus is inhibited exclusively in cells with intact interferon (IFN) pathway as well as in vivo, in hamsters, and this attenuation is associated with stronger induction of type I IFN response. Therefore, although nsp1's shutoff activity is broad, it plays an essential role, specifically in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover nsp1's explicit role in blocking the IFN response.


Subject(s)
COVID-19 , Viral Nonstructural Proteins , Cell Line , Humans , RNA Stability , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
3.
Sci Adv ; 7(8)2021 02.
Article in English | MEDLINE | ID: covidwho-1088182

ABSTRACT

The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, because of close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find that an engineered decoy receptor, sACE22v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain followed by in vitro selection, with wild-type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild-type receptor. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 Drug Treatment , Protein Engineering , SARS-CoV-2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , Cell Line , Chiroptera , Humans , Mutagenesis , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
4.
Cell Host Microbe ; 27(5): 841-848.e3, 2020 05 13.
Article in English | MEDLINE | ID: covidwho-716611

ABSTRACT

The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 106 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections/virology , DNA, Complementary/genetics , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/pathogenicity , Pneumonia, Viral/virology , Animals , Antiviral Agents/therapeutic use , COVID-19 , Chlorocebus aethiops , Clone Cells , Coronavirus Infections/drug therapy , Genes, Reporter/genetics , Genome, Viral/genetics , Interferons/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , RNA, Viral/genetics , SARS-CoV-2 , Vero Cells/virology , Virus Replication/physiology
5.
Emerg Infect Dis ; 26(6): 1266-1273, 2020 06.
Article in English | MEDLINE | ID: covidwho-324432

ABSTRACT

The etiologic agent of an outbreak of pneumonia in Wuhan, China, was identified as severe acute respiratory syndrome coronavirus 2 in January 2020. A patient in the United States was given a diagnosis of infection with this virus by the state of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens from this patient and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into 2 virus repositories, making it broadly available to the public health and research communities. We hope that open access to this reagent will expedite development of medical countermeasures.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Animals , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Genome, Viral , Humans , Nasopharynx/virology , Oropharynx/virology , Pandemics , SARS-CoV-2 , Vero Cells , Viral Tropism , Virus Replication , Washington
SELECTION OF CITATIONS
SEARCH DETAIL